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Abstract
Many insect species have circadian rhythms of pheromone production/titer, calling, emission, and response that are involved 
in intraspecific communication and impact pest management practices. Rhythms of pheromone biosynthesis, most studied 
in moths affecting forestry and agriculture, contribute to a periodicity of pheromone concentration or titer within glands 
or hemolymph. Calling rhythms by the pheromone-emitting sex are physical movements (pumping, vibrating wings) that 
aid in release and dispersion of the volatile pheromone components attractive to the opposite conspecific sex or both sexes. 
Circadian rhythms of emission of pheromone also occur as a result of an interaction between calling and the titer of phero-
mone available for release. Responding individuals usually show a coincidental rhythm of dispersal flight while seeking 
pheromone plumes in which, by orienting upwind, the insects find mates or food resources. However, some species begin 
searching an hour or more before the emitting sex initiates calling and emission, which benefits mass trapping control pro-
grams because the baited traps do not compete initially with natural pheromone sources. In our review, data of daily rhythms 
of moths and other insects were extracted from the literature by screen capture software to calculate mean time of activity 
and standard deviation and fit to normal curves. These methods are illustrated for various insects and as a basis for discussion 
of interactions of pheromonal circadian rhythms of the well-studied gypsy moth Lymantria dispar, spruce budworm moth 
Choristoneura fumiferana, turnip moth Agrotis segetum, and cabbage looper moth Trichoplusia ni. The various circadian 
rhythms are discussed in relation to application of species-specific sex and aggregation pheromones for benign biological 
control and management of pest insects.
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Introduction

Circadian rhythms are innate biological rhythms of behav-
ior or physiology occurring repeatedly every 24 h. In a 
broad sense, circadian just means about a day. In nature, 
the cycles are synchronized by exogenous environmental 
cues known as zeitgebers (German for time-givers). While 
temperature and humidity can act as zeitgebers, they can be 
affected by weather and vegetation and therefore are not as 
reliable as light intensity changes at dusk or dawn (Brady 
1979; Cloudsley-Thompson 1980; Fleissner and Fleissner 
2002). Strictly, circadian rhythms once entrained by several 
natural cycles of light:dark (L:D) must then repeat every 
day under constant light or dark under artificial conditions 
in the laboratory. Biological rhythms where there is as yet a 
lack of evidence of innate periodicity are termed diel. How-
ever, in cases where a diel rhythm has been reported, further 
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experiments under constant light or dark for over 24 h have 
nearly always found that the periodicities continue several 
cycles and are in fact circadian rhythms. In nocturnal ani-
mals, most circadian rhythms are re-set each day by lights 
off (sunset as zeitgeber), and a specific rhythm becomes 
longer than a 24-h day in constant light, but shorter than a 
day in constant dark. In diurnal insects, on the other hand, 
circadian rhythms are usually re-set by lights on (sunrise is 
zeitgeber) while under constant light their rhythm becomes 
shorter than a day, but longer than a day in constant dark 
(Aschoff 1969; Cloudsley-Thompson 1980; Fleissner and 
Fleissner 2002). The zeitgebers for nocturnal and diurnal 
animals mentioned above and the free-running rhythms in 
constant light or dark have been called Aschoff’s rule. How-
ever, Sower et al. (1971a) found evidence of a zeitgeber for 
a nocturnal insect that is contrary to Aschoff’s rule. They 
found that female cabbage loopers Trichoplusia ni have a 
calling rhythm peak that occurs about 20.4 h after sunrise 
(lights on zeitgeber) regardless of L:D photoperiod rang-
ing from 15L:9D to 9L:15D. Most research on circadian 
rhythms involving pheromones have not had the goal of 
determining the zeitgeber and effects of different L:D photo-
periods, although some studies will be considered here. The 
main goal has rather been describing the time period when 
the insects were calling (body movements such as pumping 
the abdomen), emitting pheromone, or responding upwind 
so that this knowledge could be applied in pest management.

Numerous studies have found that the natural rhythms 
are modified in onset and length by environmental factors, 
foremost by changes from dark to light (morning) or light 
to dark (evening). In addition, different temperatures have 
been shown to modify pheromonal rhythms in onset and 
length (Sower et al. 1971a; Gorsuch et al. 1975; Bollinger 
et al. 1977; Baker and Cardé 1979; Castrovillo and Cardé 
1979; Alford and Hammond 1982; Haynes and Birch 1984; 
Delisle and McNeil 1987; Gerber and Howlader 1987; 
Delisle and Royer 1994), but the modifications in the 
rhythms were relatively small over the usual temperature 
ranges where flight and mating occur most frequently (18 
to 32 °C). Large changes in humidity had almost no effect 
on rhythms (Webster and Cardé 1982a), although low 
humidity and desiccation weakened European corn borer 
moths so that females called later in the night and for a 
shorter time (Royer and McNeil 1991). Very high-intensity 
light in the laboratory can also disrupt circadian rhythms 
(Fleissner and Fleissner 2002), but this is unnatural and 
not applicable to applied work. It is well known that some 
insect pests feeding on crops have high populations over 
several months each year due to multiple generations, 
while other insects have a relatively short flight activity 
period each year. The effects of seasonal photoperiod and 
temperature changes on pheromonal circadian rhythms 
are likely significant for insects that reproduce over an 

extended period, but less important for insects that fly over 
a short period each year under less variable conditions.

Circadian rhythms have likely evolved because they 
synchronize daily environmental changes (light and tem-
perature) with activities that increase the reproductive fit-
ness of individuals of each species, depending on their 
biology. Circadian rhythms are thus different in onset, 
peak, and duration with respect to photophase or scoto-
phase for each species that occupy different niches. There 
can be several rhythms operating simultaneously with dif-
ferent periods and synchronies occurring at different times 
of the day, for example, emergence, feeding, calling, mat-
ing, oviposition, and anemotactic response rhythms. As 
mentioned above, studies in the laboratory have shown that 
varying environmental factors such as ratios of light:dark 
durations over 24 h can affect onset and lengths of circa-
dian rhythms. Although the majority of laboratory stud-
ies attempt to replicate natural photoperiods and tempera-
tures, some studies may not reflect the photoperiods and 
rhythms in nature. However, studies in the field such as 
observations of flying individuals responding to a source 
of pheromone are certainly under natural photoperiods and 
temperatures.

Probably all insect species have several different diel or 
circadian rhythms of various types, for example, emergence 
(Byers 1983; Kumara et al. 2015), feeding (Krupke et al. 
2006), locomotion/flight (Bento et al. 2001; Jones and Gub-
bins 1979; Byers and Löfqvist 1989; Silvegren et al. 2005), 
and oviposition (Byers 1987; Pashley et al. 1992; Wang 
et al. 2002), that in some ways affect directly or indirectly 
pheromonal communication. This review will concentrate 
on pheromone-related rhythms of pheromone component 
titer in glands or bodies, calling (gland eversion, pumping, 
or wing flapping movements), emission of attractive sex and 
aggregation pheromones, similar rhythms of response of the 
attracted conspecifics, and mating (largely coinciding with 
calling, emission, and response). Because most studies have 
been on important forest and agricultural pest insects, we 
will discuss the natural biology in relation to applications 
in pest management. It is also important to note that stud-
ies of all insect circadian rhythms including those relating 
to pheromone communication are important in countering 
invasive species due to climate changes and global com-
merce (Hulme 2009). Knowledge of circadian rhythms of 
pheromone emission and response is important to (1) phero-
mone identification, (2) daily timing of control treatments 
such as insecticides when insects are most vulnerable, and 
(3) circadian application of pheromone dispensing to save 
costly pheromone and increase longevity. For example, 
use of automatic puffers (battery operated devices that dis-
pense pheromone) that release pheromone during response 
periods can save costs of pheromone in mating disruption 
(McGhee et al. 2016).
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Most studies on pheromone circadian rhythms of insects 
involve pests of food and fiber which drives the economics of 
entomological studies. For practical purposes, whether the 
reported rhythms of activity are diel or circadian does not 
matter much, only that the activity rhythms are consistent in 
order to design reliable management methods. Groot (2014) 
reviewed circadian rhythms of sexual pheromone activities 
in moths, which included female pheromone calling (usually 
the percentage calling of a sample of individuals) observed 
repeatedly over time, as well as circadian changes in phero-
mone quantity in glands (titer), and male responses (percent-
age of a group orienting) toward a source of pheromone, or 
numbers captured in the field. In Groot’s review, graphs and 
data of circadian pheromone rhythms in the literature were 
transformed and shown in three increasing activity intensi-
ties of light, medium, and dark shades. While some earlier 
studies were quantitative and calculated a mean or median 
time of the rhythms entrained to a certain L:D photoperiod, 
very few studies have calculated a weighted mean time of 
peak activity and breadth as described by a standard devia-
tion (SD) (Kochansky et al. 1977; Löfstedt et al. 1982; Byers 
1987). Thus, we decided to model the reported pheromonal 
rhythms by a normal curve with a calculated mean and SD 
and a scaling factor, as was done for mean height and SD of 
vertical flight distributions of insects (Byers 2011).

We analyzed a database of 224 articles on pheromone-
related circadian rhythms of insects (Supplementary infor-
mation) and found moths (Lepidoptera) were represented 
most (152 papers, 67.9%) of insects. Of the Lepidoptera, 
most research has been done on the moth family Noctui-
dae (64 articles, 28.6%) followed by Tortricidae (21, 9.4%), 
Pyralidae (15, 6.7%), and Erebidae (Lymantriidae) (15, 
6.7%) (Supplementary Table S1). Beetles (Coleoptera) were 
covered by 19 articles (8.5%), followed closely by sucking 
insects (Hemiptera) with 18 articles (8.0%), and flies (Dip-
tera) with 14 articles (6.3%). There have been fewer arti-
cles on ants, bees, and wasps of order Hymenoptera with 

six articles (2.7%) which are the same as for cockroaches 
in order Dictyoptera, two articles on Ixodida (ticks), and 
only one article each on Trichoptera (caddisflies), Acarina 
(mites), and Araneidae (spiders). The orders with the most 
number of families:genera are Lepidoptera (18:62), Coleop-
tera (7:18), Hemiptera (7:16), Diptera (5:8), Hymenoptera 
(4:4), and Dictyoptera (4:5) (Table S1).

The database of articles was also examined for phero-
mone-related keywords that describe study areas regard-
ing circadian-like rhythms. Keywords such as (a) produc-
tion/biosynthesis, (b) titre (titer), (c) calling, (d) emission/
release rate, and (e) response that are circadian (Table S2, 
supplementary information). In reviewing the literature, it 
became apparent that some keywords for behaviors were 
used improperly; for example, emission was used in titles 
where calling was actually measured. This problem is now 
less common with the advent of air collection of volatiles 
on absorbents and sensitive chemical analysis by gas chro-
matography-mass spectrometry (GC–MS). Therefore, one 
objective was to discuss the commonly used keywords and 
their interactions to aid understanding and development of 
improved control methods of pest management that utilize 
pheromones.

Rhythms of pheromone production

Pheromone titer in the body/gland may not be well corre-
lated with either calling or pheromone production because 
of pheromone storage within the insect prior to rapid emis-
sion during calling (Fig. 1). Pheromone production or bio-
synthesis has been used in titles of articles in which only 
pheromone titer was determined (e.g., Gueldner and Wiygul 
1987; Babilis and Mazomenos 1992; Kamimura and Tat-
suki 1993, 1994; Foster and Roelofs 1994; Guldemond et al. 
1994; Rafaeli and Klein 1994; Choi et al. 1998; Delisle 
et al. 1999; Foster 2000; Dong and Du 2001; Xiang et al. 

Fig. 1  Diagram of relation-
ships between various circadian 
rhythms (boxes) affecting insect 
communication with phero-
mones
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2010). Emission of pheromone during calling may outpace 
biosynthesis such that pheromone titer of female glands of 
omnivorous leafroller moths declined about 80% during the 
first half of a 6-h calling period in the scotophase (Webster 
and Cardé 1982b). Similarly, 10% of a group of female cab-
bage looper moths were calling at the onset of scotophase 
which increased linearly to 80% calling over 8 h, but at the 
same time pheromone emission increased about 50% over 
the first 4 h of scotophase and the pheromone titer of glands 
decreased from 1000 to about 300 ng per gland (Hunt and 
Haynes 1990). These results could mean that pheromone 
production declined during the scotophase, but more likely 
the emissions depleted titer faster than its replenishment. 
In contrast, over the first hour of scotophase female corn 
earworm moths had a fivefold increase in pheromone titer 
while calling increased concomitantly (Raina et al. 1991). 
An increase in pheromone gland titer during an increase 
in emission and calling during the day was also the case 
for gypsy moths until dusk when both emission and titer 
declined during the night (Charlton and Cardé 1982). 
Neither an increase or decline in titer of sex pheromone 
occurred in glands of virgin female peach twig borer moths 
during 24-h period even though there was a sharp 3-h emis-
sion in the morning (Schlamp et al. 2006).

Rhythms of pheromone titer

Many of the 224 studies we analyzed involved pheromone 
titer (Fig. 1) within the entire body, a major part such as 
abdomen, or most often a specific gland of an insect. In these 
studies, the amounts of pheromone components extracted 
from the tissues of the whole body or of dissected glands 
were quantified usually by GC or GC–MS at specific times 
during the day. The pheromone titer has been shown to vary 
on a daily rhythm in 52 articles (23.2%) (e.g., Webster and 
Cardé 1982b; Raina et al. 1986; Delisle and McNeil 1987; 
Dunkelblum et al. 1987; Schal et al. 1987; Ramaswamy et al. 
1988; Ono et al. 1990; Heath et al. 1991; Giebultowicz et al. 
1992; Tang et al. 1992; Delisle and Royer 1994; Rafaeli 
and Klein 1994; Del Mazo-Cancino et al. 2004; Mazor and 
Dunkelblum 2005; Liu et al. 2013; Lu et al. 2017).

Rhythms of pheromone calling

The most common topic with 82 papers (36.6%) is about the 
timing, duration, and percentage of a group of individuals 
exhibiting so-called calling behaviors (Fig. 1), represented 
mostly by studies on female moths with 66 publications 
(28.9%). Calling is the behavior of the emitting sex that 
appears to facilitate release and dispersion of the volatile 
molecules of the pheromone components away from the 

insect (Sower et al. 1971b). This usually involves pump-
ing and exposure of glands in the abdomen and wing fan-
ning in female moths or other exposure of their glands that 
can be discerned by the investigator. In moths this behavior 
is readily observed in females that exhibit a circadian-like 
rhythm of calling to males (e.g., Cardé 1974; Gorsuch et al. 
1975; Baker and Cardé 1979; Castrovillo and Cardé 1979; 
Kaneko 1986; Konno 1986; Delisle and McNeil 1987; Ger-
ber and Howlader 1987; Kou and Chow 1987; Itagaki and 
Conner 1988; Ramaswamy et al. 1988; Raina et al. 1991; 
Kamimura and Tatsuki 1994; Mozuraitis et al. 1997; Dong 
and Du 2001; Castrejón-Gómez 2010; Xiang et al. 2010; 
Sadek et al. 2012; Foster et al. 2020). In some moth species, 
males may release a sex pheromone, different from conspe-
cific females, that attracts the latter from a short range of 
several centimeters and stimulates them to allow mounting 
and copulation by the male (e.g., Bento et al. 2001; Levi-
Zada et al. 2014a). Circadian rhythms of calling have been 
investigated in only a few studies of species in order Coleop-
tera (Hammack and Burkholder 1976; Cross et al. 1977; Ma 
and Burkholder 1978; Leal et al. 1993), Diptera (Hendrichs 
and Hendrichs 1990; Epsky and Heath 1993; Quilici et al. 
2002), and Hemiptera (Eisenbach and Mittler 1980; Thieme 
and Dixon 1996; Margaritopoulos et  al. 2007; Stewart-
Jones et al. 2007). However, calling may not be apparent in 
many insects (and thus not investigated) because either the 
observer is not aware of the specific behavior or there may 
be no movement and merely a release of pheromone (McNeil 
and Brodeur 1995).

Calling is usually observed for a cohort of insects, while 
individuals are usually not observed continuously. Thus, it 
is not known whether the 50% calling snapshot of a group 
of female moths at a particular hour is from half the indi-
viduals calling briefly multiple times during the night or 
the same individuals calling a few times for much longer 
periods. Multiple brief calling periods would likely make 
pheromone plumes shorter and might be an advantage at 
higher population densities to reduce interference by males. 
Kipp et al. (1995) observed a high population density where 
they caught a mean of 11 spruce budworm males per hour 
on a virgin female trap just before dusk. Individual female 
moths have not been reported to change their calling bout 
lengths or frequencies in response to pheromone concentra-
tion. However, Sadek et al. (2012) briefly exposed calling 
females to synthetic pheromone at the beginning of calling 
in scotophase and found the length of the group’s usual call-
ing period was extended and suggested this was in response 
to perceived competition among females to attract males.

Relatively few studies have looked at individual calling 
bout lengths of females. Castrejón-Gómez (2010) observed 
20 virgin female sapodilla pod borer moths for several days, 
and the females appeared to call continuously for about 5 h 
with one or two not calling or only for an hour. In the codling 
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moth, after the first day, virgin females appear to call for a 
mean of about 4-h duration, but the females were observed 
every 1–3 h (Castrovillo and Cardé 1979) which might bias 
results if observations coincided with shorter but frequent 
bouts. Females of true armyworm moths had a mean calling 
bout length of only 28 min on the first night of calling and 
then a mean bout of 54 min on the second night (Delisle and 
McNeil 1987). In the berth armyworm moth on the second 
calling night, Gerber and Howlader (1987) found that in a 
short 8-h scotophase the mean calling bout length was 1.5 h, 
which increased to 3.2 h in a 12-h scotophase, and to 4 h 
in a 16-h scotophase. Studies on virgin moths have found 
that mean calling bout time is several hours (Haynes and 
Birch 1984; Mazor and Dunkelblum 2005; Ming et al. 2007; 
Zarbin et al. 2007) or 6–9 h by a female cockroach (Smith 
and Schal 1991). However, some studies on individual vari-
ation in calling bout duration of female noctuid moths have 
shown that most have bouts of about 0.5 h while progres-
sively fewer have bouts from 1 to 3 h (Monti et al. 1995). 
Individual cutworm moth females had bouts of 0.5 to 2 h 
(Teal 1985).

In contrast to female-calling moths, many species of 
beetles, cockroaches, fruit flies, solitary wasps, and plant 
bugs have males that are the calling sex (Halstead 1973; 
Jacobson et al. 1973; Chuman et al. 1987; Robacker 1988; 
Sreng 1990; Jarvis and Rutledge 1992; Brézot et al. 1994; 
Farine et al. 1994, 2007; Hoglund and Alatalo 1995; Ham-
ilton et al. 1996; Khoo et al. 2000; Shelly 2001; McBrien 
et al. 2001, 2002; Field et al. 2002; Quilici et al. 2002; Hall 
et al. 2006; Borges et al. 2007; Wicker-Thomas 2007; Segura 
et al. 2007; Geiselhardt et al. 2008; Robacker et al. 2009; 
Cooperband et al. 2012). Models show that without phero-
mone traps (the native condition), the mate-finding success 
of both male-calling species and female-calling moth species 
is the same, but under mass trapping the species with calling 
males incur higher rates of female captures and less mating 
success (Byers 2012).

Rhythms of pheromone emission

Many reports on circadian rhythms have titles with keywords 
that promise pheromone release or emission (Fig. 1) but 
actually report only on calling activities (e.g., Sower et al. 
1971a; Calvert and Corbet 1973; Fatzinger 1973; Eisen-
bach and Mittler 1980; Alford and Hammond 1982; Haynes 
and Birch 1984; Teal 1985; Chon et al. 1990; Thieme and 
Dixon 1996). Emission or release of pheromone should 
rather be used in reference to measurements of release rates 
of pheromone component amounts collected on absorbents 
from headspace air and chemically analyzed (Charlton and 
Cardé 1982; Morse et al. 1982; Pope et al. 1982; Haynes 
et al. 1983; Schal et al. 1987; Bestmann et al. 1988; Witzgall 

and Frérot 1989; Hunt and Haynes 1990; McLaughlin et al. 
1990; Nation 1990; Heath et al. 1991, 1993; Valles et al. 
1992; Epsky and Heath 1993; Leal et al. 1996; Bäckman 
et al. 1997; Bashir et al. 2003; Schlamp et al. 2006; Stewart-
Jones et al. 2007; Fonseca et al. 2010; Byers et al. 2013; 
Skabeikis et al. 2016; Nojima et al. 2018). Relative emis-
sion rates can also be measured over the circadian day by 
solid-phase microextraction (SPME), which has been used 
for identifying pheromone components that when examined 
usually exhibit circadian cycles (Levi-Zada et al. 2012, 2013 
2014a b, 2019, 2020a, b).

Pheromone release is a result of biosynthesis contribut-
ing to titer that is depleted by exposure of glands during 
calling. Release rates of pheromone can decline over the 
calling period if pheromone titer decreases due to inade-
quate biosynthesis or not decline due to compensation by 
increased biosynthesis. Schal et al. (1987) found that 13 of 
16 female moths, Holomelina lamae (Erebidae = Arctiidae), 
had individual release rates that significantly declined dur-
ing the calling period, while two other moths released more 
consistently, and only one female of 16 increased its release 
rate during calling. Schal et al. also measured pheromone 
emission from nine calling females of which seven emitted 
pheromone primarily for 30 min and by the next hour little 
was emitted, while in two females pheromone was emitted 
at levels of the first 30 min for another 2 h. In codling moths, 
however, shortly after dark the pheromone gland titer of cod-
lemone in females increased slightly during calling which 
coincided with an increase in release rate (Bäckman et al. 
1997). In the moth Cacoecimorpha pronubana (Tortrici-
dae), individual females during the calling period had simi-
lar and consistent rates of emission of the main pheromone 
component (Witzgall and Frérot 1989). It is clear that the 
most relevant measure in regard to the chemical ecology of 
pest management would be the variation in circadian emis-
sion rate over 24 h and not necessarily the titer or calling 
rhythms. The release rate is what the responding individuals 
actually detect and respond to.

Rhythms of behavioral response 
to pheromone

The receiving individuals show an attractive pheromone 
response (walking or flying upwind) to sex and aggrega-
tion pheromone sources according to an odor-modulated 
anemotaxis (David et al. 1982) (Fig. 1). In some cases, the 
response period is wider and does not coincide fully with 
the emission period of the sending individuals, but usu-
ally the emission and response rhythms are well correlated 
(McLaughlin et al. 1990; Heath et al. 1993; Schlamp et al. 
2006; Levi-Zada et al. 2014b, 2018). Calling and response 
also are usually well correlated (Cardé et al. 1974; Cross 
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et  al. 1977; Castrovillo and Cardé 1979; Quartey and 
Coaker 1996; Zhang et al. 1996; Sasaerila et al. 2000). 
However, male long-horned beetles emitted sex phero-
mone many hours after most females responded (Skabeikis 
et al. 2016). Some moth species have a response period 
that appears longer than the calling period of females 
(Haynes and Birch 1984; Kawasaki 1986; Zhang and Paiva 
1998). Sometimes the responding sex begins flying and 
responds earlier in time than when pheromone is released 
(or calling as a proxy) by conspecific females (Fatzinger 
1973; Cardé 1974; Baker and Cardé 1979; Cibrian-Tovar 
and Mitchell 1991; Zhang and Paiva 1998). Some studies 
have indicated that synthetic pheromone attracts insects 
earlier and over a more prolonged period than do virgin 
calling insects (Kawasaki et al. 1983; Hendricks 1985; 
Kaster et  al. 1989; Stevenson and Harris 2009). This 
earlier than expected response window in male moths 
is termed response protandry or protandrous response, 
which can increase the effectiveness of mass trapping. This 
is because earlier each day for a period of time attractive 
traps have little competition from attractive females and 
thus males are readily trapped. Unmated female papaya 
fruit flies were attracted to synthetic pheromone of males 
earlier in the photophase than were mated females (Land-
olt and Heath 1988). Some ticks produce and respond to 
assembly pheromones throughout a 24-h period (Rechav 
19781978). Generally, if the time window of response 
is larger than the emission window, then mass trapping 
should be more effective than otherwise.

The role of an antennal response rhythm in rhythms of 
behavioral response is uncertain. In a few studies, the anten-
nal receptors are reported to show a circadian rhythm of 
depolarization magnitude of electrophysiological recordings 
in response to volatiles. Rymer et al. (2007) showed a dra-
matic increase in electroantennographic (EAG) response of 
cockroach Leucophaea maderae to non-pheromone volatiles 
3-hydroxy-2-butenone or senecioic acid. Several male pher-
omone–related volatiles gave small but consistently higher 
EAG responses in the afternoon than in the morning for both 
males and females of the Mediterranean fruit fly (Sollai et al. 
2018). However, in other studies on the turnip moth, there 
was no evidence of an EAG rhythm regarding sex phero-
mone (Rosén et al. 2003). Earlier work on the spruce bud-
worm moth did not show an EAG rhythm to sex pheromone 
tested every hour of the day (Worster and Seabrook 1989). It 
is generally accepted that the insect’s brain is mainly respon-
sible for associating the various antennal signals and other 
sensory input in coordination with circadian rhythm con-
tributions to effect orientation toward pheromone sources 
(Todd and Baker 1999). The odor-modulated anemotaxis 
response is based on the brain and visual responses to the 
movement below the flyer as well as olfactory response of 
the antenna/brain (David et al. 1982; Cardé and Willis 2008).

Rhythms of the central nervous system also impact 
response rhythms. A rhythm of electrical activities of neu-
rosecretory cells involved in pheromonal activities is regu-
lated by release of pheromone binding neuropeptide (PBAN) 
that stimulates calling in the silkworm moth and coincides 
with the first 75% of the scotophase and then PBAN levels 
drop precipitously (Ichikawa 1998). Konstantopoulou et al. 
(2006) found that a general odorant binding protein was 
lower in scotophase than in photophase in both sexes of a 
noctuid moth Manduca sexta, indicating a possible circadian 
rhythm. However, they found that the male’s pheromone 
binding protein (PBP) did not change levels between day 
and night. Different clock genes in the antenna and brain 
of noctuid moth Spodoptera littoralis were found to cycle 
according to a circadian rhythm, and the EAG responses 
measured every 3 h were claimed to follow a daily rhythm 
(Merlin et al. 2007). However, only at the end of scotophase 
was the EAG response significantly less than at other times 
during the day which were nearly the same. Nagari et al. 
(2017) performed EAG on honeybee antennae with sev-
eral volatiles and fit cosine curves through data during the 
day. They found consistent fits for foragers but not nurse 
bees, suggesting a circadian rhythm in foragers. However, 
the EAG potentials appear nearly the same for a particular 
chemical over the day. These changes in EAG could be due 
to other factors changing during the day and it remains a 
question whether these subtle changes in EAGs are biologi-
cally significant. A clock gene in Drosophila melanogaster 
was found using monoclonal antibodies to be in pheromone-
sensitive sensilla and receptor neurons, and the gene expres-
sion varied daily (Schuckel et al. 2007).

Effects of mating, emergence, 
and oviposition rhythms

There is probably a feedback loop between pheromone 
production and pheromone titer. Mating (Fig. 1) often 
shuts down pheromone production and calling, which in 
turn reduces or terminates pheromone release (Byers 1981; 
Webster and Cardé 1984; Raina et al. 1986; Dunkelblum 
et al. 1987; Chon et al. 1990; Mbata and Ramaswamy 
1990; Babilis and Mazomenos 1992; Tang et al. 1992; 
Foster and Roelofs 1994; McNeil and Brodeur 1995; Del 
Mazo-Cancino et al. 2004; Levi-Zada et al. 2014b). Some 
studies have indicated that calling and assumed pheromone 
release are not synchronous with mating. In the Mas-
carene fruit fly (Tephritidae), males exhibit a 5.5-h calling 
period starting at dawn, but mating began midway through 
the calling period and extended about 2 h after calling 
ended, possibly due to time needed for pre-mating court-
ships (Quilici et al. 2002). These courtships in fruit flies 
appear complex with both sexes of many species releasing 
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different volatiles assumed to be involved in sexual selec-
tion and mating (Levi-Zada et al. 2020b).

Locomotor activity or flight activity (Fig. 1) usually 
also has a rhythm that influences attraction to pheromone 
(and trap catch). Obviously if the flight activity rhythm 
(which includes visiting flowers for nectar) is not com-
pletely correlated with pheromone release, this will pre-
clude pheromone response and mating part of the time 
(Fig. 1). Thus, female moth pheromone titer plus female 
calling/exposure of gland will provide a pheromone 
release that interacts with male activity and male phero-
mone attraction (response) rhythms that result in mating 
or trap captures.

Emergence rhythms, which may affect pheromonal 
aspects mentioned earlier (Fig.  1), will also have an 
impact on flight activity and specifically on flight density. 
However, emergence often does not have an immediate 
effect on mating as it can take several days before a sex is 
ready to call and mate. Mating is usually prerequisite for 
oviposition rhythms (Fig. 1). Furthermore, as mentioned 
above, mating usually inhibits pheromone biosynthesis, 
calling, and mating because the female has an interest in 
finding oviposition sites and laying eggs on appropriate 
hosts. Oviposition rhythms (Fig. 1) occur at a different 
time than calling because the emitting sex (e.g., female 
moth) must remain stationary while calling so as to receive 
the responding opposite sex, while ovipositing requires 
searching for suitable host plants. For example, females 
of the turnip moth Agrotis segetum have an ovipositional 
rhythm that peaks at dusk (Byers 1987) and is over by the 
middle of scotophase when females peak in their calling 
(Löfstedt et al. 1982).

Analysis of pheromonal rhythms of insects

To achieve a quantitative analysis of insect daily rhythms 
(emergence, titer, calling, emission, response) reported 
in the literature, the data in figures of downloaded PDFs 
(Adobe Inc.) were screen-captured (Print Screen, Windows 
10, Microsoft Inc.) and copied into software constructed in 
Java programming language (1.6 version, Oracle Inc.). The 
pixel coordinates of data in images were converted by the 
software to real values (Eq. 1 in Byers 2013). The values 
then were used to calculate the mean hour of a rhythm on 
X-axis and SD as weighted by activities on Y-axis (e.g., 
emergence, titer, emission) during the day from Eqs. 1 and 
2, respectively, in Byers (2011), where hour of data obser-
vation replaces trap height and circadian activity replaces 
trap catch. A normal curve equation was fit to the circadian 
activity data using the calculated mean time of activity (X) 
and SD as found from the equation:

where b = mean hour of activity during day (and converted 
to hour of photophase or scotophase as appropriate), c = SD 
of mean hour of activity, and a is a scaling factor found by 
computer iteration of Eq. (1) using an initial value for a from 
the following equation:

where M is the maximum activity observed during the 
rhythm. The iterations proceed with a calculated above 
(Eq. 2) and then at each subsequent iteration of Eq. 1 reduc-
ing a by a/10,000 until stopping when a ≤ 0.01. The value 
of a at which the sum of the squared differences between 
the data points and the equation was least is the best-fitting 
normal equation corresponding to the given mean and SD 
(Byers 2011).

This analysis method was applied to pheromone circadian 
rhythms of calling, emission, and response of several insects 
from diverse families in non-lepidopteran orders (beetles, 
mealybugs, aphids, flies, bees, parasitic wasps, and cock-
roaches) (Table 1). Representative species of Coleoptera in 
five diverse families all had activity rhythms in the photo-
phase (Bashir et al. 2003; Cross et al. 1977; Dobson and Teal 
1986; Faustini et al. 1982; Fonseca et al. 2010; Gueldner and 
Wiygul 1978) except for a scarab species (Leal et al. 1996) 
with activity in the scotophase (Table 1). Generally, insects 
that are active in daylight or those that are nocturnal have 
mean times in the photophase or scotophase, respectively. 
In a dermestid beetle (Cross et al. 1977), female calling 
had a mean time 3.98 h into photophase that was identical 
to male response at 4.1 h, although the response rhythm 
appeared broader based on SD. Similarly in a grain weevil 
(Faustini et al. 1982), the male response rhythm was about 
the same as the female rhythm to male-produced aggrega-
tion pheromone (Table 1). In the order Hemiptera, emission 
of sex pheromone released by female citrus mealybug had 
a maximum at the end of night (Table 1), while in the vine 
mealybug female emission peaked in the morning (Levi-
Zada et al. 2014a, b). In contrast, females of the spherical 
mealybug have a mean emission time of sex pheromone in 
the late afternoon (Levi-Zada et al. 2019). In an aphid, egg-
laying females have a mean calling time in the photophase 
of 5.87 ± 2.94 h but their emission peak of sex pheromone 
occurs about 1.85 h later (Stewart-Jones et al. 2007). In fruit 
flies (Diptera: Tephritidae), species- and sex-specific vola-
tiles are released in higher amounts during times of courtship 
and mating (usually in morning or late afternoon) (Table 1). 
In most fruit fly species, however, pheromonal functions of 
volatiles have been difficult to characterize apparently due to 

(1)Y = a

[

���

(

−
(X − b)2

2c2

)

∕(c(2�)0.5)

]

(2)a = 2M∕(
1

b(2�)0.5
)
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complex interactions among several volatiles, acoustic wing 
vibrations, visual displays, and mating-lek context (Nation 
1990; Quilici et al. 2002; Levi-Zada et al. 2020a, b). In the 
European honey bee (Hymenoptera: Apidae), queen phero-
mone titer peaks midday (Pain and Roger 1978), while in a 
wasp parasitic of insects (Brachonidae), males respond to 
virgin females in mid-morning (McNeil and Brodeur 1995). 
The brown-banded cockroach (Dictyoptera) is nocturnal and 
female calling peaks at 6.58 h of scotophase, which is simi-
lar to the male response to female sex pheromone at 6.98 h 
scotophase (Table 1; Smith and Schal 1991; Liang and Schal 

1990). The German cockroach is also nocturnal, and female 
calling occurs during the last half of night and into the morn-
ing, so the mean time occurs early in photophase (1.25 h) but 
has a broad SD of 5.78 h (Table 1). Mating of the German 
cockroach peaks about 15 min before dawn (11.44 h sco-
tophase) and thus is not significantly different from calling 
(Table 1; Liang and Schal 1993). These examples indicate 
that mean time of pheromonal activity of different species 
can occur at any time of the day-night and can overlap L:D 
or D:L transitions. The different mean times of circadian 
rhythms of various species probably evolved to enhance 

Table 1  Mean time (hours) 
and SD in photophase or 
scotophase of pheromone 
activity rhythms calculated from 
graphical data in literature on 
non-lepidopteran insects. Data 
were fit to a normal equation 
from the mean time (b) and 
SD (c) by computer iteration to 
obtain the scaling coefficient 
a, allowing estimation of Y 
activity (emission, calling, or 
response) at any hour X (from 
Eq. 1 in text)

1 Mean hour of circadian activity ± SD (P = photophase, S = scotophase)
2 Scaling coefficient a, mean hour b, and SD c are used to calculate Y of activity (described in first column) 
at any hour X of photophase or scotophase according to the normal curve Eq. (1) in text
3 Literature sources: (1) Bashir et al. (2003); (2) Cross et al. (1977); (3) Dobson and Teal (1986); (4) Faus-
tini et al. (1982); (5) Fonseca et al. (2010); (6) Gueldner and Wiygul (1978); (7) Leal et al. (1996) (8) Levi-
Zada et al. (2014b); (9) Levi-Zada et al. (2019); (10) Stewart-Jones et al. (2007); (11) Nation (1990); (12) 
Quilici et al. (2002); (13) Levi-Zada et al. (2020b); (14) Pain and Roger (1978); (15) McNeil and Brodeur 
(1995); (16) Smith and Schal (1991); (17) Liang and Schal (1990); (18) Liang and Schal (1993). More 
details are given in Supplementary information table S3

Species Sex Activity Source Mean h ± SD (P/S)1 a2 R2 (N)

Coleoptera (beetles)
  Rhyzopertha dominica Male Emission (1)3 7.94 ± 4.9 (P) 0.475 0.29 (7)
  Trogoderma variabile Female Calling (2) 3.98 ± 2.45 (P) 233.2 0.82 (27)
  Trogoderma variabile Male Response (2) 4.1 ± 3.7 (P) 566.8 0.55 (8)
  Diabrotica barberi Male Response (3) 4.23 ± 1.07 (P) 62.9 0.80 (14)
  Sitophilus granarius Male Response (4) 6.0 ± 4.94 (P) 444.9 0.34 (6)
  Sitophilus granarius Female Response (4) 6.7 ± 4.64 (P) 588.4 0.49 (6)
  Hedypathes betulinus Male Emission (5) 6.49 ± 1.98 (P) 696 0.76 (6)
  Anthonomus grandis Male Emission (6) 7.25 ± 4.23 (P) 24.7 0.97 (9)
  Anomala albopilosa Male Emission (7) 2.20 ± 2.05 (S) 45.95 0.58 (6)

Hemiptera (mealybugs, aphids, and sucking bugs)
  Planococcus citri Female Emission (8) 11.93 ± 2.26 (S) 6.34 0.99 (11)
  Planococcus ficus Female Emission (8) 2.53 ± 5.05 (P) 6.02 0.90 (11)
  Nipaecoccus viridis Female Emission (9) 11.36 ± 2.32 (P) 167.3 0.99 (7)
  Dysaphis plantaginea Female Calling (10) 5.87 ± 2.94 (P) 858.5 0.48 (12)
  Dysaphis plantaginea Female Emission (10) 7.72 ± 4.27 (P) 69.7 0.84 (16)

Diptera (flies)
  Anastrepha suspensa Male Emission (11) 11.36 ± 1.60 (P) 587.4 0.95 (8)
  Ceratitis catoirii Male Calling (12) 2.97 ± 1.23 (P) 85.95 0.90 (13)
  Ceratitis catoirii Male Mating (12) 5.27 ± 1.39 (P) 12.67 0.82 (12)
  Bactrocera zonata Female Emission (13) 10.06 ± 2.87 (P) 221.4 0.80 (6)
  Bactrocera zonata Male Emission (13) 7.97 ± 3.38 (P) 92.7 0.17 (9)

Hymenoptera (bees, ants, and wasps)
  Apis mellifera ligustica Female Titer (14) 7.42 ± 4.36 (P) 9110 0.90 (6)
  Aphidius nigripes Male Response (15) 4.09 ± 2.95 (P) 80.3 0.50 (7)

Dictyoptera (cockroaches)
  Supella longipalpa Female Calling (16) 6.58 ± 2.80 (S) 665.9 0.83 (14)
  Supella longipalpa Male Response (17) 6.98 ± 4.11 (S) 1124 0.92 (9)
  Blattella germanica Female Calling (18) 1.25 ± 5.78 (P) 1175 0.76 (24)
  Blattella germanica Female Mating (18) 11.44 ± 4.22 (S) 101.9 0.73 (23)
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fitness by reducing competition or interference with other 
sympatric species sharing their niche, although experiments 
to test this are largely lacking.

Several moth species (Lepidoptera) of immense economic 
importance including the gypsy moth Lymantria dispar (L.), 
spruce budworm Choristoneura fumiferana (Clemson), 
turnip moth Agrotis segetum (Schiff.), and cabbage looper 
Trichoplusia ni (Hübner) are among the insects most inten-
sively studied regarding pheromonal rhythms. These four 
pest species with documented multiple circadian rhythms 
will be analyzed as above and discussed.

Gypsy moth Lymantria dispar

The gypsy moth (Lepidoptera: Erebidae = Lymantriidae) 
occurs across northern Eurasia and was introduced into 
Massachusetts about 1869 where it has spread to become a 
severe pest in eastern USA (Cameron et al. 1974; Cardé et al. 
1996; Tobin et al. 2009). Females do not fly and thus ovi-
posit close to their emergence site, while males fly in search 
of females. Dispersal is by larval ballooning, a term mean-
ing larvae are carried by wind on long silken threads as are 
immature spiders (Tobin et al. 2009). The caterpillars feed 
upon 300 species of both deciduous and coniferous trees 
and can severely defoliate oak, willow, and aspen (Elkinton 
and Liebhold 1990; Tobin et al. 2009). Up to a half million 
ha of forests in the USA were infested in 1971 (Cameron 
et al. 1974). USDA programs to detect the gypsy moth used 
up to 250,000 pheromone traps annually across the USA 
from Minnesota to North Carolina in the first decade of 2000 
(Tobin et al. 2009). These programs still continue today.

Gypsy moths have an emergence (or eclosion) rhythm 
with peak (or mean) at 5.8 h of photophase and SD = 2.5 h 
(Fig. 2A, Cardé et al. 1996). Odell (1978) also showed an 
emergence rhythm during the day. The mean time of adult 
emergence, as expected, was earlier than any other phe-
romonal rhythm. The titer of disparlure pheromone (cis-
7,8-epoxy-2-methyloctadecane) in female glands measured 
by Tang et al. (1992) was modeled by a normal curve with 
a mean of 12.21 h of photophase and SD = 6.5 h (Fig. 2B) 
yielding a maximum Y of 23.2 ng/gland at the peak titer 
(solving Eq. 1 for Y at mean X = 12.21 and a, b, c param-
eters as in Fig. 2B). This normal curve has a mean time of 
pheromone titer that is about 6 h after the mean emergence 
time. The emission of disparlure from female gypsy moths 
(Charlton and Cardé 1982) appears to have a very similar 
rhythm to that of titer, with a mean of 12.6 ± 5.52 h (± SD) 
in photophase (Fig. 2C). We calculate that the peak emis-
sion rate of a 2-day-old virgin female was 29.6 ng/2 h based 
on the normal curve fit solving for Y in Eq. 1. It is not sur-
prising that the emission closely follows the calling rhythm, 
although it is theoretically possible that different rates of 

pheromone biosynthesis and calling might cause the pat-
terns to be unsynchronized. The normal curves fit well with 
coefficients of determination (R2) 0.86 to 0.93 for phero-
mone-related rhythms (Fig. 2B–E). The emergence/eclosion 
rhythm fit less well with the data (R2 = 0.55). After a single 
mating, female gypsy moths cease to call (Tang et al. 1992). 
As mentioned earlier, male attraction to virgin females is a 

Fig. 2  Activity rhythms involved in pheromone communication of 
gypsy moth Lymantria dispar represented as normal curves with 
mean time (X) and SD. A Emergence from pupae (Cardé et al. 1996); 
B disparlure (cis-7,8-epoxy-2-methyloctadecane) pheromone titer 
of female gland (Tang et  al. 1992); C emission of pheromone from 
female (Charlton and Cardé 1982); D male catch on virgin female 
traps (Cardé et al. 1974); and E male catch on disparlure-baited pher-
omone traps (Cardé et al. 1974). Calculation of R2 and coefficients for 
corresponding normal curves explained in text
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combination of emission (due to pheromone biosynthesis, 
titer, and calling) and the innate rhythm of male response 
to pheromone, the latter expected to be synchronized well 
with emission. Perhaps surprisingly, the mean time of catch 
on traps with virgin females (8.65 ± 2.69 h) was about 4 h 
earlier (Fig. 2D) than mean emission time (Fig. 2C). The 
peak catch at the mean time is not relevant to calculate from 
Eq. 1 as this depends on population levels. The mean time of 
male catch on traps releasing disparlure (Fig. 2E) is similar 
to catch on virgin females but was perhaps an hour earlier 
at 7.38 ± 2.3 h (protandry). The SD of male catch on both 
virgin females and disparlure is similar and considerably 
less than the SD of emission rate (Fig. 2). The protandry of 
male response would tend to aid mass trapping since males 
could be caught by traps before many females call and emit 
pheromone. It is notable that females called and emitted 
pheromone well into the night when hardly any males were 
responding to females or disparlure.

Spruce budworm Choristoneura fumiferana

The spruce budworm (Lepidoptera: Tortricidae) is a native 
insect with a wide distribution from eastern North America 
across the boreal and mixed coniferous forests into Alaska 
(Goodbody et al. 2018; Royama 1984). The larvae feed on 
spruce (Picea spp.) and fir (Abies spp.) accounting for 40 to 
50% of Canada’s timber losses from biological disturbances, 
or an average of 1.8 million ha of annual forest defoliation 
in Ontario since 1990 (Goodbody et al. 2018). Outbreaks of 
spruce budworm range in size, intensity, and duration occur-
ring about every 30–40 years with a duration of 10–15 years 
(Royama 1984; Régnière and Nealis 2007). Population 
cycles of the spruce budworm appear regulated by an array 
of natural enemies interacting with host tree condition and 
climate (Royama 1984; Eveleigh et al. 2007; Régnière and 
Nealis 2007; Gray 2008; Nealis et al. 2015).

Spruce budworm adults exhibit an emergence rhythm 
in the afternoon, or a mean of 9.97 h of photophase and 
SD = 3.49 h (Fig. 3A, Kipp et al. 1995). Similar to the 
gypsy moth, emergence must occur before pheromonal 
activities can take place. The rhythm of pheromone 
titer appears flat during the scotophase with a mean of 
2.67 ± 3.06  h (± SD) in the scotophase (Delisle et  al. 
1999, Fig. 3B). Using Eq. 1 and the parameters shown 
for the normal curve best fitting the mean and SD, the 
peak titer of the female’s gland is 3.6 ng. Calling female 
spruce budworms have a very similar rhythm of calling 
(mean of 2.92 ± 2.37 h of scotophase) to that of gland 
titer, although data points are more peaked for calling 
compared to flat-topped for titer (Fig. 3B, C). It should 
be noted that titer and calling were measured under the 
same 16L:8D photoperiod while emission was measured 

under a 12L:12D photoperiod. Under this longer 12-h sco-
tophase, the rhythm of pheromone emission of a female 
was 6.17 ± 2.28 h of scotophase. The peak emission of 
pheromone E11-14:Al is 30.7 ng/h from a virgin female 
(Fig. 3D, Morse et al. 1982). It can be seen that the rhythm 
of emission is approximately in the middle of scotophase, 
while titer and calling also are roughly in the middle of 

Fig. 3  Activity rhythms involved in pheromone communication of 
spruce budworm Choristoneura fumiferana represented as normal 
curves with mean time (X) and SD. A Emergence from pupae (Kipp 
et  al. 1995); B E11-14:Al pheromone titer of female gland (Delisle 
et  al. 1999); C calling females (Delisle et  al. 1999); D emission of 
E11-14:Al pheromone from female (Morse et al. 1982); and E male 
catch on virgin females in high-density population (Kipp et al. 1995). 
Calculation of R2 and coefficients for corresponding normal curves 
explained in text
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scotophase but perhaps somewhat earlier in the night. 
It would be interesting to determine emission and call-
ing under the same photoperiod. Under a shorter night 
18L:7D photoperiod in the field, the mean male catch 
on virgin female spruce budworm moths was actually 
at 13.61 ± 4.54 h of the photophase (Fig. 3E, Kipp et al. 
1995), which is significantly earlier than means for call-
ing and emission (Fig. 3C, D). This appears to be a good 
example of protandry where the earliest males would mate 
in nature, but under mass trapping would be trapped more 
effectively than species where calling and response are 
better synchronized.

Turnip moth Agrotis segetum

The turnip moth (Lepidoptera: Noctuidae) is a cutworm 
that has a wide geographic distribution across temperature 
regions of Europe and Asia as well as Africa. Although the 
name implies that the moth feeds on turnips, the larvae feed 
on roots (including turnips) and lower parts of a very large 
number of host plants in many genera, ranging from corn 
and vegetables to conifers and some semi-toxic plants (Eras-
mus et al. 2010; Esbjerg and Sigsgaard 2014).

Female turnip moths oviposit in a rhythm with a mean at 
dusk (0.35 h ± 2.08 h in scotophase, Fig. 4A, Byers 1987). 
The egg laying occurs several hours before any of the phe-
romonal rhythms. For example, females have a mean calling 
time of 3.95 ± 0.93 h in the scotophase (Fig. 3B, Löfstedt 
et al. 1982) that occurs about 3.6 h after mean oviposition 
time. However, oviposition and calling rhythms should not 
interact since mating leads to oviposition in subsequent days. 
The reason for different peaks for oviposition and calling 
are unclear. The rhythm of calling appears more narrow 
than other rhythms such as titer, PBAN, or male response. 
Pheromone component Z7-12:Ac in 2-day-old virgin female 
turnip moths had a titer rhythm with mean 3.52 ± 2.33 h of 
scotophase (Fig. 4C, Rosén 2002). The peak titer of Z7-
12:Ac was calculated as 0.96 ng per female. Male response 
to a four-component pheromone blend in the wind tunnel 
had a mean of 3.56 ± 1.86 h of scotophase (Fig. 4D, Rosén 
et al. 2003), similar to the mean times for titer and calling. 
PBAN concentration in female hemolymph had a mean at 
4.03 ± 3.42 h of scotophase (Fig. 4E, Závodska et al. 2009), 
also similar to the mean times of male response and female 
calling and titer. The peak PBAN concentration in females 
at the mean time was 205 pM (Eq. 1). There is no evidence 
that males respond to pheromone before females call (i.e., 
no protandry that would benefit mass trapping). However, 
mass trapping with the four-component synthetic pheromone 
reduced males catch by 79% and female mating by 62% com-
pared to control plots (Svensson et al. 2001).

Cabbage looper Trichoplusia ni

The cabbage looper (Lepidoptera: Noctuidae) is a major pest 
of cole crops (broccoli, Brussels sprout, collards, cabbage, 
cauliflower, kale, mustard, and turnip) and lettuce. The cab-
bage looper can also live on several weeds in agricultural 

Fig. 4  Activity rhythms involved in pheromone communication of 
turnip moth Agrotis segetum represented as normal curves with mean 
time (X) and SD. A Eggs laid (Byers 1987); B calling females (Löf-
stedt et  al. 1982); C pheromone component Z7-12:Ac titer of gland 
of 2-day-old females (Rosen 2002); D number males responding to 
pheromone blend in wind tunnel (Rosen et  al. 2003); and E PBAN 
(pheromone biosynthesis activating neuropeptide) concentration of 
female hemolymph (Zavodska et  al. 2009). Calculation of R2 and 
coefficients for corresponding normal curves explained in text
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areas and trap crops have not been effective in control (Cam-
eron et al. 2007). In addition to the economic impact on 
plants in the family Brassicaceae, over 100 species of plants 
are eaten by cabbage looper (Hoo et al. 1984; Garcia et al. 
2020). The female-produced sex pheromone consists of the 
primary component Z7-12:Ac and five additional minor 
components (Bjostad et al. 1984; Linn and Roelofs 1992). 
In response to female pheromone, males release a different 
sex pheromone from hair pencil glands in their wings that 
consists of S-linalool, p-cresol, and m-cresol, and probably 
acts to stimulate mating (Heath et al. 1992).

The major pheromone component Z7-12:Ac in female 
glands of cabbage loopers showed a rhythmic dip in titer 
during the scotophase as fit with a Gaussian equation (with 
non-linear regression, TableCurve2D, Systat Software Inc., 
Chicago, USA). This curve (Fig. 5A) has four coefficients, 
with c = 14.1 h (8.1 h of scotophase) that when X = c (Eq. 1) 
gives the lowest titer Y = 212 ng, or using X = 2 h gives the 
highest titer of 780 ng (Hunt and Haynes 1990). The titer 
may decline after 2 h of scotophase due to pheromone bio-
synthesis not keeping pace with emission losses during call-
ing (Fig. 5B). Calling by females was fit by a normal equa-
tion with mean time of 6.32 ± 2.01 h in scotophase. Almost 
identical with calling females, the response of males to vir-
gin females in the field had a mean of 6.19 ± 1.97 h in the 
scotophase (Fig. 5C, Hendricks 1985). The catch of males 
on Z7-12:Ac baited traps in the field had a mean time of 
4.03 ± 1.79 h (Fig. 5D, Saario et al. 1970), which indicates 
some protandry of males that could be caught by traps before 
finding females during mass trapping. Although a shorter 
dark period in the lab, Linn and Roelofs (1992) found males 
oriented to a 6-component blend of cabbage looper phero-
mone in a wind tunnel had a mean of 4.89 ± 1.78 h (Fig. 5E) 
that was similar to male catch to the main component in the 
field (Fig. 5D). Effects of increasing scotophase lengths on 
calling and response in the cabbage moth follow.

Sower et  al. (1971a) provide interesting results with 
increasingly longer scotophases of photoperiods. Longer 
dark periods of entrainment of 9, 10.5, 12, 13.5, or 15 h dur-
ing each 24 h caused mean calling times in the scotophase to 
change, respectively, from 5.32, 7.32, 8.49, 9.95, or 11.0 h 
(our calculations, Fig. 6A–E). The SD of mean times of the 
rhythms did not appear to change significantly as all five 
were between 1.59 to 2.16 h. According to Aschoff’s rule 
for nocturnal animals, the mean calling time should be about 
the same time of night after dusk zeitgeber regardless of 
scotophase length, which is not the case here. Interestingly, 
the mean times of calling in all five different scotophase 
lengths were about 3–4 h before morning light. Sower et al. 
pointed out that the zeitgeber must be “lights on” (morning) 
since about 20–21 h later the peak of calling occurs in all 
five different photoperiods. It seems adaptive for cabbage 
loopers to call the same time before dawn regardless of the 

dark period length, and not in the middle or near the first part 
of the scotophase. Perhaps other moth species may follow 
Aschoff’s rule if calling is adaptive to be synchronized with 
the earlier part of the night.

In contrast to female calling rhythms above, Linn et al. 
(1996) studied effects of different photoperiods on rhythms of 

Fig. 5  Activity rhythms involved in pheromone communication of 
cabbage looper Trichoplusia ni represented as normal curves with 
mean time (X) and SD. A Pheromone titer of Z7-12:Ac in female 
gland (Hunt and Haynes 1990) follows a Gaussian curve; B calling 
females (Hunt and Haynes 1990); C catch of males on virgin females 
in traps in July (Hendricks 1985); D catch of males on Z7-12:Ac 
pheromone traps in July (Saario et  al. 1970); and E male response 
to pheromone 6-component blend in wind tunnel (Linn and Roelofs 
1992). Data in upper graph did not fit a normal curve but rather a 
Gaussian-like curve as indicated. Calculation of R2 and coefficients 
for other graphs explained in text
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male response in a wind tunnel to a 6-component pheromone 
blend of the cabbage looper moth (Fig. 7). The scotophases 
of experiments were of increasing duration: 6, 10, 12, 14, and 
18 h per day and the mean times of response were 3.54, 5.63, 
6.54, 7.78, and 9.69 h of scotophase, respectively (our calcu-
lations). The SD of mean time of response was proportional 
to the length of the dark period, ranging from 1.4 in the 6-h 
scotophase to 4.75 h in the 18-h scotophase. The SD of each 

mean time as a percentage of the scotophase was approxi-
mately 59, 56.3, 54.5, 55.6, and 53.8%, remarkably consistent 
(Fig. 7). Thus, the mean times of response were not the same 
time after lights off, nor were they a uniform time after lights 
on as was found for calling by Sower et al. (1971a). There 
does not seem to be a zeitgeber, rather the mean response 
time of males is just after the middle of the night regardless 
of night length. This appears due to an increase in response 
over the first 2 h of scotophase and then a uniform high 

Fig. 6  Female calling rhythms involved in pheromone communi-
cation of cabbage looper Trichoplusia ni represented as normal 
curves with mean time (X) and SD under five different photoperi-
ods (Sower et al. 1971a). A 15L:9D; B 13.5L:10.5D; C 12L:12D; D 
10.5L:13.5D; and E 9L:15D. Calculation of R2 and coefficients for 
corresponding normal curves explained in text

Fig. 7  Rhythms of male responses in wind tunnel involved in phero-
mone communication of cabbage looper Trichoplusia ni represented 
as normal curves with mean time (X) and SD under five different 
photoperiods (Linn et al. 1996). A 18L:6D; B 14L:10D; C 12L:12D; 
D 10L:14D; and E 6L:18D. Calculation of R2 and coefficients for cor-
responding normal curves explained in text
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level of response for the rest of the night except for perhaps 
a decline in the last hour or so of scotophase (Fig. 7A–E). 
Therefore, males have a wide response window during the 
night no matter its length. This wide response time of males 
would precede female calling (Fig. 6) and continue thereaf-
ter, a protandry effect and sustained response that is espe-
cially important in pest control for relatively longer scoto-
phase periods in the spring and autumn. This pattern of male 
response is consistent with male catch on traps with virgin 
females that are likely calling (Hendricks 1985, Fig. 5C), 
but is not consistent with catch on Z7-12:Ac (Saario et al. 
1970, Fig. 5D) where SD/10 h = 17.9% and attraction was 
low for the last 3 h of scotophase. However, the data of Linn 
et al. (1996) is consistent with earlier work (Linn and Roelofs 
1992; Fig. 5E) where an 8-h scotophase caused a mean time 
of 4.89 h (intermediate between means of 3.54 and 5.63 h for 
6- and 10-h scotophases above), although the SD/8 h = 22.3% 
is less than ~ 55% found above for other photoperiods (Fig. 7) 
but similar to 17.9% mentioned above (Fig. 5D).

Conclusions and future research

Basic studies of circadian rhythms of insects regarding 
pheromone communication should focus on determin-
ing the zeitgebers and consider the selective advantages 
for some nocturnal insects that use dusk while others use 
dawn to set their rhythms. It would also be interesting to 
survey more species and determine the zeitgebers for dif-
ferent rhythms. Studies of individual variation of circadian 
rhythms of pheromone emission and the responses have 
been far fewer than the number of studies on percentage 
of insects in groups calling, mean titer, or responses (catch 
each hour). The weighted mean time and SD of pheromonal 
rhythms in past studies has generally not been given as in 
the present review, although some studies reported median 
or mean times (although often the mean onset time of call-
ing). This can be improved in future work using methods 
described here (Byers 2011). In addition to means of groups, 
individual variation in durations of calling bouts, emission 
bouts, and searching flights should be investigated to deter-
mine how this variation might impact the ecology and pest 
management of each species.

Sex and aggregation pheromones released from traps are 
used for detection of invasive species, in monitoring of popu-
lation levels that trigger control, and in control methods of 
mass trapping (El-Sayed et al. 2006; Levi-Zada et al. 2018). 
Knowledge of the mean and breadth SD of rhythms of phero-
mone emission and of response indicate when each pest spe-
cies is most vulnerable to control methods with pheromones 
and insecticides. This knowledge needs to be integrated with 
control programs that take advantage of when to activate 
pheromone puffer devices and smart release formulations 

in order to conserve pheromone and improving longevity of 
mating disruption. The use of pheromones in pest manage-
ment has the advantage of being environmentally safe (not 
toxic and used in very low dosages) and not harmful to polli-
nating bees and generalist natural enemies of pest insects (El-
Sayed et al. 2006). Because pheromones are critically advan-
tageous for communication within a species, it has so far not 
been documented that heavy use of pheromones has caused 
a species to become resistant by evolving another pheromone 
(Haynes and Baker 1988). Mass trapping will be more effec-
tive with pest species in which the responding sex begins 
searching an hour or more before the emitting sex begins 
calling/emission, i.e., protandry in the case of male-searching 
moths and protogyny in the case of female-searching species. 
Pest species that additionally search for a period after most of 
the emitting sexes cease to release pheromone will also tend 
to be controlled better by mass trapping.
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